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CHAPTER 16

Online Mechanisms

David C. Parkes

Abstract

Online mechanisms extend the methods of mechanism design to dynamic environments with multiple
agents and private information. Decisions must be made as information about types is revealed online
and without knowledge of the future, in the sense of online algorithms. We first consider single-
valued preference domains and characterize the space of decision policies that can be truthfully
implemented in a dominant strategy equilibrium. Working in a model-free environment, we present
truthful auctions for domains with expiring items and limited-supply items. Turning to a more general
preference domain, and assuming the existence of a probabilistic model for agent types, we define a
dynamic Vickrey–Clarke–Groves mechanism that is efficient and Bayes–Nash incentive compatible.
We close with some thoughts about future research directions in this area.

16.1 Introduction

The decision problem in many multiagent problem domains is inherently dynamic
rather than static. Consider, for instance, the following environments:

� Selling seats on an airplane to buyers arriving over time.
� Allocating computational resources (bandwidth, CPU, etc.) to jobs arriving over time.
� Selling adverts on a search engine to a possibly changing group of buyers and with

uncertainty about the future supply of search terms.
� Allocating tasks to a dynamically changing team of agents.

In each of these settings at least one of the following is true: either agents are
dynamically arriving or departing, or there is uncertainty about the set of feasible
decisions in the future. These dynamics present a new challenge when seeking to
sustain good systemwide decisions in multiagent systems with self-interested agents.

This chapter introduces the problem of online mechanism design (online MD),
which generalizes the theory of computational mechanism design to apply to dynamic
problems. Decisions must be made dynamically and without knowledge of future agent
types or future decision possibilities, in the sense of online algorithms.
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16.1.1 Example: Dynamic Auction with Expiring Items

Consider a dynamic auction model with discrete time periods T = {1, 2, . . . , } and
a single indivisible item to allocate in each time period. The type of an agent i ∈
{1, . . . , N} is denoted θi = (ai, di, wi) ∈ T × T × R>0. Agent i has arrival time ai ,
departure time di , value wi for an allocation of a single unit of the item in some period
t ∈ [ai, di], and wants at most one unit. This type information is all private to an agent.
We refer to this as the canonical expiring items environment.

The arrival time has a special meaning: it is the first period in which information
about the type of this agent can be made available to the auction. (We say “can be made
available” because a self-interested agent may choose to delay its report.) Assume
quasi-linear utility, with utility wi − p when the item is allocated in some t ∈ [ai, di]
and payment p is collected from the agent. Consider the following naive generalization
of the Vickrey auction to this dynamic environment.

Auction 1. A bid from an agent is a claim about its type, θ̂i = (âi , d̂i , ŵi), neces-
sarily made in period t = âi . Then: in each period t , allocate the item to the highest
unassigned bid, breaking ties at random. Collect payment equal to the second-highest
unallocated bid in this round.

Example 16.1 Jane sells ice cream and can make one cone each hour.
The ice cream melts if it is not sold. There are three buyers, with types
(1, 2, 100), (1, 2, 80), and (2, 2, 60), indicating (arrival, departure, value). Buyers
1 and 2 are willing to buy an ice cream in either period 1 or 2 while buyer 3 will
only buy an ice cream in period 2. In this example, if every buyer is truthful then
buyer 1 wins in period 1 for 80, stops bidding, and buyer 2 wins in period 2 for
60. But buyer 1 can do better. For example, buyer 1 can report type (1, 2, 61), so
that buyer 2 wins in period 1 for 61, stops bidding, and then buyer 1 wins for 60
in period 2. Buyer 1 can also report type (2, 2, 80) and delay its bid until period
2, so that buyer 2 wins for 0 in period 1, stops bidding, and then buyer 1 wins for
60 in period 2.

In a static situation the Vickrey auction is (dominant-strategy) truthful because an
agent does not affect the price it faces. But, in a sequential setting an agent can choose
the auction in which it participates and thus choose the other agents against which
it competes and, in turn, the price faced. In fact, if every agent was impatient (with
di = ai), then, prices in future periods are irrelevant and the dominant strategy is to bid
truthfully immediately upon arrival. Note also that buyer 1’s manipulation relied on a
suitable bid from buyer 3 in period 2 and will not always be useful. Nevertheless, this
serves to demonstrate the failure of dominant strategy truthfulness.

16.1.2 The Challenge of Online MD

The dynamics of agent arrivals and departures, coupled perhaps with uncertainty
about the set of feasible decisions in the future and in general about the state of the
environment, makes the problem of online MD fundamentally different from
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that of standard (offline) MD. Important new considerations in online MD are as
follows.

(i) Decisions must be made without information about agent types not yet arrived, coupled
perhaps with uncertainty about which decisions will be feasible in future periods.

(ii) Agents can misrepresent their arrival and departure time in addition to their valuation
for sequences of decisions. Because of this agent strategies also have a temporal aspect.

(iii) Only limited misreports of type may be available, for instance it may be impossible
for an agent to report an earlier arrival than its true arrival.

More generally, online MD can also model settings in which an agent’s type is
revealed to itself over time and with its ability to learn dependent on decisions made
by the online mechanism; e.g., a bidder needs to receive a resource to understand its
value for the resource.

There are two main frameworks in which to study the performance of online mech-
anisms. The first is model-free and adopts a worst-case analysis and is useful when
a designer does not have good probabilistic information about future agent types or
about feasible decisions in future periods. The second is model-based and adopts an
average-case analysis. As a motivating example, consider a search engine selling search
terms to advertisers. This is a data-rich environment and it is reasonable to believe that
the seller can build an accurate model to predict the distribution on types of buyers,
including the process governing arrival and departures.

16.1.3 Outline

In Section 16.2 we present a general model for online MD and introduce the con-
cept of limited misreports. Given this, we define direct-revelation, online mecha-
nisms together with appropriate notions of incentive compatibility. Section 16.3 pro-
vides a characterization of truthful online mechanisms in the restricted domain of
single-valued preferences and gives detailed examples of truthful, dynamic auctions.
These auctions are analyzed within the framework of worst-case, competitive analysis.
Section 16.4 considers general preference domains, and defines a dynamic Vickrey–
Clarke–Groves mechanism, that is efficient and applicable when a model is available
and common knowledge to agents. Section 16.5 closes with open problems and future
directions.

16.2 Dynamic Environments and Online MD

The basic setting assumes risk neutral agents with quasi-linear utility functions, such
that an agent acts to maximize the expected difference between its value from a sequence
of decisions and its total payment. Consider discrete time periods T = {1, 2, . . .},
indexed by t and possibly infinite. A mechanism makes (and enforces) a sequence
of decisions k = (k1, k2, . . .) ∈ O, with decision kt made in period t . Let k[t1,t2] =
(kt1, . . . , kt2 ). The decisions made by a mechanism can depend on messages, such as
bids, received from agents as well as uncertain events that occur in the environment.
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For example, in sponsored search the realized supply of search terms determines the
feasible allocation of user attention to advertisers.

An agent’s type, θi = (ai, di, wi) ∈ �i , where �i is the set of possible types for
agent i, defines a valuation function vi(θi, k) ∈ R on a sequence of decisions k and
is private to an agent. Time periods ai, di ∈ T denote an agent’s arrival and departure
period and vi(θi, k) = vi(θi, k

[ai ,di ]); i.e., an agent’s value is invariant to decisions
outside of its arrival–departure window. In addition to restricting the scope of decisions
that influence an agent’s value, the arrival period models the first period at which the
agent is able to report its type to the mechanism.

The valuation component wi ∈ Wi of an agent’s type, where Wi denotes the set
of possible valuations, parameterizes the agent’s valuation function and can be more
expressive than a single real number. For example, in an online combinatorial auction
this needs to convey enough information to define substitutes (“I want item A or item B

but not both”) or complements (“I only want item A if I also get item B”) preferences.
Nor does the valuation need to be constant across all periods, for instance an agent
could discount its future value in future periods t > ai by discount factor γ t−ai for
γ ∈ (0, 1).

16.2.1 Direct-Revelation Mechanisms

The family of direct-revelation, online mechanisms restricts the message that an agent
can send to the mechanism to a single, direct claim about its type. For the most part we
consider “closed” mechanisms so that an agent receives no feedback before reporting
its type, and cannot condition its strategy on the report of another agent.

The mechanism state, ht ∈ Ht , where Ht is the set of possible states in period t ,
captures all information relevant to the decision by the mechanism in that period. Let
ω ∈ � define the set of possible stochastic events that can occur in the environment,
such as the realization of uncertain supply. This does not include the types of agents
or any randomization within the mechanism itself. Write � = �t∈T �t and let ωt ∈ �t

denote the information about ω that is revealed in period t . Similarly, let θ t denote
the set of agent types reported in period t . Given this, it is convenient to define
ht = (θ1, . . . , θ t ; ω1, . . . , ωt ; k1, . . . , kt−1). In practice, the state will be represented
by a small, sufficient statistic of this information. The state space H = ⋃

t H
t may be

finite, countably infinite, or continuous. This depends, in part, on whether agent types
are discrete or continuous. Let K(ht ) denote the set of all feasible decisions in the
current time period, assumed finite for all ht . Let I (ht ) denote the set of active agents
in state ht , i.e. those agents for which t ∈ [ai, di].

Definition 16.2 (direct-revelation online mechanism) A direct-revelation on-
line mechanism, M = (π, x), restricts each agent to making a single claim about
its type, and defines decision policy π = {πt}t∈T and payment policy, x = {xt}t∈T ,
where decision πt (ht ) ∈ K(ht ) is made in state ht and payment xt

i (h
t ) ∈ R is col-

lected from each agent i ∈ I (ht ).

Decision policy π may be stochastic. The payment policy may collect pay-
ments from an agent across multiple periods. For notational convenience, we let
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π(θ, ω) = (k1, k2, . . .) denote the sequence of decisions, and pi(θ, ω) ∈ R denote the
total payment collected from agent i, given type profile θ and a realization of uncertain
events ω ∈ �.

Example 16.3 Consider the canonical expiring items environment. The state
ht can be defined as a list of reported agent types that are present in period t ,
indicating whether each agent is already allocated or not. Decision k ∈ K(ht )
decides whether to allocate the item in the current period to some agent that is
present and unallocated.

Limited misreports constrain the strategy space available to agents in direct-
revelation, online mechanisms:

Definition 16.4 (limited misreports) Let C(θi) ⊆ �i for θi ∈ �i denote the set
of available misreports to an agent with true type θi .

In the standard model adopted in offline MD, it is typical to assume C(θi) = �i . We
shall assume no early-arrival misreports, with C(θi) = {θ̂i = (âi , d̂i , ŵi) : ai ≤ âi ≤
d̂i , ŵi ∈ Wi}; i.e., agent i cannot report an earlier arrival because it does not know
its type (or know about the mechanism) until ai . Sometimes, we shall also assume
no late-departure misreports, which together with no early arrivals provides C(θi) =
{θ̂i = (âi , d̂i , ŵi) : ai ≤ âi ≤ d̂i ≤ di, ŵi ∈ Wi}. For example, we could argue that it
is not credible to claim to have value for a ticket for a last minute Broadway show after
5 p.m. because the auctioneer knows that it takes at least 2 hours to get to the theater
and the show starts at 7 p.m.

We restrict attention to mechanisms that are either dominant-strategy or Bayes–
Nash incentive compatible. Let θ−i = (θ1, . . . , θi−1, θi+1, . . .), �−i = �j �=i�j , and
C(θ−i) = �j �=iC(θj ), and consider misreports θi ∈ C(θi).

Definition 16.5 (DSIC) Online mechanism M = (π, x) is dominant-strategy
incentive-compatible (DSIC) given limited misreports C if

vi(θi, π(θi, θ
′
−i , ω)) − pi(θi, θ

′
−i , ω) ≥ vi(θi, π(θ̂i , θ

′
−i , ω)) − pi(θ̂i , θ

′
−i , ω),

for all θ̂i ∈ C(θi), all θi , all θ ′
−i ∈ C(θ−i), all θ−i ∈ �−i , all ω ∈ �.

It will be convenient to also adopt the terminology truthful in place of DSIC. The
concept of DSIC requires that an agent maximizes its utility by reporting its true type
whatever the reports of other agents and for all stochastic events ω. When the decision
policy itself is stochastic then DSIC requires that the expected utility is maximized
from a truthful report, whatever the reports of other agents and (again) for all stochastic
events ω. A randomized mechanism (i.e., one with a stochastic policy) is said to satisfy
strong-truthfulness when truthful reporting is a dominant strategy for all random coin
flips by the mechanism, and for all external stochastic events ω.
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For Bayes–Nash incentive compatibility (BNIC), we assume in addition that all
agents know the correct probabilistic model of the distribution on types and uncertain
events, and that this is common knowledge.

Definition 16.6 (BNIC) Online mechanism M = (π, x) is Bayes–Nash
incentive-compatible (BNIC) given limited misreports C if

E{vi(θi, π(θi, θ−i , ω)) − pi(θi, θ−i , ω)} ≥ E{vi(θi, π(θ̂i , θ−i , ω)) − pi(θ̂i , θ−i , ω)},
for all θ̂i ∈ C(θi), all θi , where the expectation is taken with respect to the distri-
bution on types θ−i , and stochastic events ω, and any randomization within the
policy.

BNIC is a weaker solution concept than DSIC because it requires only that truth
revelation is a best response when other agents are also truthful, and in expectation
given the distribution on agent types and on stochastic events in the environment.

16.2.2 Remark: The Revelation Principle

Commonly held intuition from offline MD suggests that focusing on the class of
incentive compatible, direct-revelation online mechanisms is without loss of generality.
However, if agents are unable to send messages to a mechanism in periods t /∈ [ai, di]
then this is not true.

Example 16.7 (failure of the revelation principle) Consider the model with
no early-arrival misreports but allow for late-departure misreports. Consider two
time periods T = {1, 2}, a single unit of an indivisible item to allocate in ei-
ther period and an environment with a single agent. Denote the type of the
agent (ai, di, wi) with wi > 0 to denote its value for the item if allocated in
period t ∈ [ai, di]. Suppose that possible types are (1, 1, 1) or (1, 2, 1). Con-
sider an indirect mechanism that allows an agent to send one of messages
{1, 2} in period 1 and {1} in period 2. Let φ denote a null message. Consider
decision policy: π1(1) = 0, π1(2) = 1, π2(1, z) = π2(2, z) = 0, for z ∈ {1, φ},
writing the state as the sequence of messages received and decision kt ∈ {0, 1}
to indicate whether or not the agent is allocated in period t ∈ {1, 2}. Con-
sider payment policy: x1(1) = x2(1, φ) = x2(1, 1) = 0, x1(2) = 3, x2(2, 1) =
−2.01, x2(2, φ) = 0. Type (1, 1, 1) will report message 1 in period 1 because re-
porting message 2 is not useful and it cannot report messages (2,1). Type (1, 2, 1)
will report messages (2,1) and has no useful deviation. This policy cannot be
implemented as a DSIC direct-revelation mechanism because type (1, 2, 1) is
allocated in period 1 for payment 0.99, and so type (1, 1, 1) (which is unallocated
if truthful) will want to report type (1, 2, 1).

The revelation principle fails in this example because the indirect mechanism
prevents the agent from claiming a later departure than its true departure. In fact,
the revelation principle continues to hold when misreports are limited to no-late
departures in addition to no-early arrivals. A form of the revelation principle can



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 5, 2007 14:29

single-valued online domains 417

also be recovered by introducing simple “heartbeat” messages into a direct-revelation
mechanism, whereby an agent still makes a single report about its type but must also
send a noninformative heartbeat message in every period t ∈ [âi , d̂i].1 We leave the
derivation of this “revelation principle plus heartbeat” result as an exercise.

With this in hand, and in keeping with the current literature on online mechanisms,
we will focus on incentive-compatible, direct revelation online mechanisms in this
chapter.

16.3 Single-Valued Online Domains

In this section we develop a methodology for the design of DSIC online mechanisms in
the restricted domain of single-valued preferences. We identify the central role of mono-
tonic decision policies in the design of truthful online mechanisms. The methodology
is illustrated in the design of a dynamic auction for two environments: (a) allocating a
sequence of expiring items and (b) allocating a single, indivisible item in some period
while adapting to information about agent types. Both auctions are model-free and we
use competitive analysis to study their efficiency and revenue properties. We close the
section with remarks that situate the study of truthful online mechanisms in the context
of the wider mechanism design literature.

16.3.1 Truthfulness for Single-Valued Preference Domains

An agent with single-valued preferences has the same value, ri , whenever any of a set of
interesting decisions is made in some period t ∈ [ai, di], and has value for at most one
such decision. For example, in the single-item allocation problems considered earlier
an agent’s interesting set was all decisions that allocate an item to the agent.

Let Li = {L1, . . . , Lm} describe a language for defining interesting sets for agent i,
where L ⊆ K = ⋃

h K(h), for any L ∈ Li , defines a subset of single-period decisions.
Let �L be a partial order defined on Li . The valuation component wi ∈ Wi of an
agent’s type, θi = (ai, di, wi), defines wi = (ri, Li) with Wi = R × Li . This picks out
the interesting set and defines the value on decisions in that set.

Definition 16.8 (single-valued) A single-valued online domain is one where
each agent i has a type θi = (ai, di, (ri, Li)), with reward ri ∈ R and interesting
set Li ∈ Li , where type θi defines valuation:

vi(θi, k) =
{

ri, if kt ∈ ⋃
L:L�LLi ,L∈Li

L for some t ∈ [ai, di]
0, otherwise,

(16.1)

To keep things simple, we assume that the set of interesting decisions is known by
the mechanism and thus the private information is restricted to arrival, departure, and
its value for a decision. We comment on how to relax this assumption at the end of
the section. Given the known interesting-set assumption, define a partial-order �θ on

1 Thanks to Bobby Kleinberg for suggesting this interpretation.
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types:

θ1 �θ θ2 ≡ (a1 ≥ a2) ∧ (d1 ≤ d2) ∧ (r1 ≤ r2) ∧ (L1 = L2). (16.2)

This will be sufficient because we will not need to reason about misreports of interesting
set Li . Consider the following example.

Example 16.9 (known single-minded combinatorial auction) Multiple units
of indivisible, heterogeneous items G, are in uncertain supply and cannot be
stored from one period to the next. Consider single-valued preferences, where
interesting set Li ∈ Li has an associated bundle S(Li) ⊆ G, and characterizes
all single-period decisions that allocate agent i bundle S(Li), irrespective of the
allocation to other agents. Define partial order L1 �L L2 ≡ S(L1) ⊇ S(L2) for all
L1, L2 ∈ Li . Agent i with type θi = (ai, di, (ri, Li)) has value ri when decision
kt allocates a bundle containing at least S(Li) items to the agent in some period
t ∈ [ai, di].

The subsequent analysis is developed for deterministic policies. We adopt shorthand
πi(θi, θ−i , ω) ∈ {0, 1} to indicate whether policy π makes an interesting decision for
agent i with type θi in some period t ∈ [ai, di], fixing type profile θ−i and stochastic
(external) events ω ∈ �. Since we are often considering auction domains, we may
also refer to an interesting decision for an agent as an allocation to the agent. The
analysis immediately applies to the case of stochastic policies when coupled with
strong-truthfulness.2 We elaborate more on stochastic policies at the end of the section.

Definition 16.10 (critical value) The critical-value for agent i given type θi =
(ai, di, (ri, Li)) and deterministic policy π in a single-valued domain, is defined
as

vc
(ai ,di ,Li )(θ−i , ω) =

{
min r ′

i s.t. πi(θ ′
i , θ−i , ω) = 1 for θ ′

i = (ai, di, (r ′
i , Li))

∞, if no such r ′
i exists,

(16.3)

where types θ−i and stochastic events ω ∈ � are fixed.

Definition 16.11 (monotonic) Deterministic policy π is monotonic if (πi(θi,

θ−i , ω) = 1) ∧ ((ri > vc
(ai ,di ,Li )

(θ−i , ω)) ⇒ πi(θ ′
i , θ−i , ω) = 1) for all θ ′

i �θ θi , for
all θ−i , all ω ∈ �.

The “strict profit” condition, ri > vc
(ai ,di ,Li )

(θ−i , ω), is added to prevent weak in-
difference when θ ′

i �θ θi and r ′
i = ri , and is redundant when r ′

i > ri . Say that an
arrival-departure interval [a′

i , d
′
i] is tighter than [ai, di] if a′

i ≥ ai and d ′
i ≤ di , and

weaker otherwise.

2 It is convenient for this purpose to consider the random coin flips of a policy as included in stochastic events ω

so that no notational changes are required.
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Lemma 16.12 The critical value to agent i is independent of reward ri and
(weakly) monotonically increasing in tighter arrival–departure intervals, given a
deterministic, monotonic policy.

proof Fix some θ−i , ω ∈ �. Assume for contradiction that θ ′
i �θ θi so that a′

i ≥
ai and d ′

i ≤ di , but vc
(a′

i ,d
′
i ,Li )

(θ−i , ω) < vc
(ai ,di ,Li )

(θ−i , ω). Modify the reward of type
θ ′
i = (a′

i , d
′
i , (r ′

i , Li)) such that r ′
i := vc

(a′
i ,d

′
i ,Li )

(θ−i , ω) and modify the reward of
type θi = (ai, di, (ri, Li)) such that ri := vc

(a′
i ,d

′
i ,Li )

(θ−i , ω). Now, we still have
θ ′
i �θ θi , but πi(θ ′

i , θ−i , ω) = 1 while πi(θi, θ−i , ω) = 0 and a contradiction with
monotonicity.

Theorem 16.13 A monotonic, deterministic decision policy π can be truthfully
implemented in a domain with known interesting set single-valued preferences,
and no early-arrival and no late-departure misreports.

proof Define payment policy xt
i (h

t ) = 0 for all t �= d̂i , and with

xt
i (h

t ) =
{

vc

(âi ,d̂i ,Li )
(θ̂−i , ω), if πi(θ̂i , θ̂−i , ω) = 1

0, otherwise
(16.4)

when t = d̂ i . This critical-value payment is collected upon departure. Fix θ−i ,
θi = (ai, di, (ri, Li)), and ω ∈ �, assume that agent i is truthful, and proceed
by case analysis. (a) If agent i is not allocated, vc

(ai ,di ,Li )
(θ−i , ω) > ri and to be

allocated, the agent must report some θ ′
i �θ θi , which it can only do with a report

θ ′
i = (ai, di, (r ′

i , Li)), and r ′
i > ri , by limited misreports. But since the critical

value is greater than its true value ri , it will have negative utility if it wins for r ′
i .

(b) If agent i is allocated, its utility is nonnegative since vc
(ai ,di ,Li )

(θ−i , ω) ≤ ri and
it does not want to report a type for which it would not be allocated. Consider any
report θ ′

i ∈ C(θi) for which the agent continues to be allocated. But, the critical
value for θ ′

i is (weakly) greater than for θi since it is independent of the reported
reward r ′

i and weakly increasing for an alternate arrival–departure interval since
it must be tighter by limited misreports, and then by appeal to Lemma 16.12.

We turn now to identifying necessary conditions for truthfulness. An online mech-
anism satisfies individual rationality (IR) when every agent has nonnegative utility
in equilibrium. This is required when agents cannot be forced to participate in the
mechanism.

Lemma 16.14 (critical payment) In a (known interesting set) single-valued
preference domain, any truthful online mechanism that is defined for a determin-
istic decision policy and satisfies IR must collect a payment equal to the critical
value from each allocated agent.

proof Fix θ−i and ω ∈ �. Payment pi(θi, θ−i , ω), made by agent i con-
tingent on successful allocation, cannot depend on reward ri because if
pi(θi, θ−i , ω) < pi(θ ′

i , θ−i , ω) for θi = (ai, di, (ri, Li)) and θ ′
i = (ai, di, (r ′

i , Li))
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and r ′
i �= ri and min(r ′

i , ri) ≥ vc
(ai ,di ,Li )

(θ−i , ω) then an agent with type θ ′
i should

report type θi . Fix type θi such that πi(θi, θ−i , ω) = 1. Now, if pi(θi, θ−i , ω) <

vc
(ai ,di ,Li )

(θ−i , ω) then an agent with type θ ′
i = (ai, di, (r ′

i , Li)) and pi(θi, θ−i , ω) <

r ′
i < vc

(ai ,di ,Li )
(θ−i , ω) should report θi . This is possible even with negative pay-

ment pi(θi, θ−i , ω) as long as rewards can also be negative. On the other hand, if
vc

(ai ,di ,Li )
(θ−i , ω) < pi(θi, θ−i , ω) then the mechanism fails IR for an agent with

type θ ′
i = (ai, di, (r ′

i , Li)) and vc
(ai ,di ,Li )

(θ−i , ω) < r ′
i < pi(θi, θ−i , ω).

Say that a domain satisfies reasonable misreporting when an agent with type θi has
available at least misreports θ ′

i ∈ C(θi) with a′
i ≥ ai , d ′

i ≤ di and any reward r ′
i .

Theorem 16.15 In a known interesting set single-valued preference domain
with reasonable misreporting, any deterministic policy π that can be truthfully
implemented in an IR mechanism that does not pay unallocated agents must be
monotonic.

proof Fix θ−i , ω ∈ �. Assume, for contradiction, that θi ≺θ θ ′
i with

θi = (ai, di, (ri, Li)) and θ ′
i = (a′

i , d
′
i , (r ′

i , Li)), but πi(θi, θ−i , ω) = 1, value
ri > vc

(ai ,di ,Li )
(θ−i , ω) and πi(θ ′

i , θ−i , ω) = 0. We must have pi(θi, θ−i , ω) =
vc

(ai ,di ,Li )
(θ−i , ω) by Lemma 16.14. Thus, agent i with type θi must have strictly

positive utility in the mechanism. On the other hand, the agent with type θ ′
i �θ θi

is not allocated, makes nonnegative payment, and has (weakly) negative utility.
But, an agent with type θ ′

i can report θi , which presents a contradiction with
truthfulness.

The restriction that losing agents do not receive a payment plays an important role.
To see this, consider a domain with no late-departure misreports, fix θ−i , and con-
sider a single-item valuation with possible types �i = {(1, 1, $10), (1, 2, $10)}. Policy
πi((1, 1, $10), θ−i) = 1 and πi((1, 2, $10), θ−i) = 0 is nonmonotonic, but can be truth-
fully implemented with payments pi((1, 1, $10), θ−i) = 8 and pi((1, 2, $10), θ−i) =
−100.

Monotonic-Late. Theorem 16.13 can be generalized to a domain with arbitrary mis-
reports of departure. For a particular θ−i , ω ∈ � and type θi = (ai, di, (ri, Li)), define
the critical departure, dc

(ai ,di ,Li )
(θ−i , ω), as the earliest departure d ′

i ≤ di for which
vc

(ai ,d
′
i ,Li )

(θ−i , ω) = vc
(ai ,di ,Li )

(θ−i , ω). This is the earliest departure time that agent i

could have reported without increasing the critical value. Given this, we say that policy
π is monotonic-late if it is monotonic and if no interesting decision is made for agent i

before its critical departure period. A monotonic-late, deterministic decision policy π

can be truthfully implemented in a domain with no early-arrival misreports but arbitrary
misreports of departure. Moreover, this requirement of monotonic-late is necessary for
truthfulness in this environment.

16.3.2 Example: A Dynamic Auction with Expiring Items

For our first detailed example we revisit the problem of selling an expiring item, such
as ice cream, time on a shared computer, or network resources, to dynamically arriving
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buyers. This is the canonical expiring items environment. Assume for notational con-
venience that the time horizon is finite. We design a strongly truthful online auction
that includes random tie-breaking and satisfies monotonicity (however ties are broken).

We assume no early-arrival and no late-departure misreports. The no late-departure
assumption can be readily motivated in physical environments. For ice cream, think
about a tour group that will be leaving at a designated time so that it is not credible to
claim a willingness to wait for an ice cream beyond that period. For network resources,
such as an auction for access to WiFi bandwidth in a coffee house, think about requiring
a user to be present for the entire period of time reported to the mechanism. A technical
argument for why we need this assumption is also provided below.3

Competitive analysis. We perform a worst-case analysis and consider the performance
of the mechanism, given a sequence of types that are generated by an “adversary” whose
task it is to make the performance as bad as possible. Of particular relevance is the
method of competitive analysis, typically adopted in the study of online algorithms.
The following question is asked: how effectively does the performance of the online
mechanism “compete” with that of an offline mechanism that is given complete infor-
mation about the future arrival of agent types? This question is asked in the worst-case,
for an adversarially defined input.

Competitive analysis is most easily justified when the designer does not have a good
model of the environment. As a motivating example, consider selling a completely
new product or service, for which it is not possible to conduct market research to
get a good model of demand. Competitive analysis can also lead to mechanisms that
enjoy good average-case performance in practice, provide insight into how to design
robust mechanisms, and produce useful “lower-bounds.” A lower-bound for a problem
makes a statement about the best possible performance that can be achieved by any
mechanism. Online mechanisms are of special interest when their performance matches
the lower bound.

In performing competitive analysis, one needs to define: an optimality criterion;
a model of the power of the adversary is selecting worst-case inputs; and an offline
benchmark, defined with perfect information about the future. We are interested in the
efficiency of a dynamic auction for expiring items and adopt as our optimality criterion
the value of the best possible offline allocation. This can be computed as follows:

V ∗(θ) = max
x,y

N∑

i=1

yiwi (16.5)

s.t.
di∑

t=ai

xit ≥ yi, ∀i ∈ {1, . . . , N} (16.6)

∑

i:t∈[ai ,di ]

xit ≤ 1, ∀t ∈ T , (16.7)

3 The requirement of no late departures can be dispensed with, while still retaining truthfulness, in environments
in which it is possible to schedule a resource in some period before an agent’s reported departure, but withhold
access to the benefit from the use of the resource until the reported departure; e.g., in grid computing, jobs can
run on the machine but the result then held until reported departure.
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where yi ∈ {0, 1} indicates whether bid i is allocated and xit ∈ {0, 1} indicates the
period in which it is allocated.4 For our adversarial model, we consider a powerful
adversary that is able to pick arbitrary agent types, including the value, arrival, and
departure of agents.

Let z ∈ Z denote the set of inputs available to the adversary and θz the corresponding
type profile. Let Val(π(θz)) denote the total value of the decisions made by policy π

given input θz. An online mechanism is c-competitive for efficiency if

min
z∈Z

E

{
Val(π(θz))

V ∗(θz)

}
≥ 1

c
, (16.8)

for some constant c ≥ 1. Such a mechanism is guaranteed to achieve within fraction 1
c

of
the value of the optimal offline algorithm, whatever the input sequence. The expectation
allows for stochastic policies and can also allow for the use of randomization in defining
the power of the adversary (we will see this in the next section). Competitive ratio c is
referred to as an upper-bound on the online performance of the mechanism.

Now consider the following modification to Auction 1:

Auction 2. A bid from an agent is a claim about its type, θ̂i = (âi , d̂i , ŵi), neces-
sarily made in period t = âi .

(i) In each period, t , allocate the item to the highest unassigned bid, breaking ties at
random.

(ii) Every allocated agent pays its critical-value payment, collected upon its reported
departure.

The auction is the same as Auction 1 except for the payment rule, which now charges
the critical value rather than the second price in the period in which an agent wins. We
refer to this as a “greedy auction” because the decision policy myopically maximizes
value in each period. When every bidder is impatient, then the auction reduces to a
sequence of Vickrey auctions (i.e., Auction 1.)

Example 16.16 Consider the earlier example, with three agents and types θ1 =
(1, 2, 100), θ2 = (1, 2, 80), and θ3 = (2, 2, 60), and one item to sell in each period.
Suppose that all three agents bid truthfully. The greedy allocation rule sells to
agent 1 in period 1 and then agent 2 in period 2. Agent 1’s payment is 60 because
this is the critical value for arrival–departure (1, 2), given the bids of other agents.
(A bid of just above 60 would allow the agent to win, albeit in period 2 instead of
period 1.) Agent 2’s payment is also 60.

Theorem 16.17 Auction 2 is strongly truthful and 2-competitive for efficiency
in the expiring-items environment with no early-arrival and no late-departure
misreports.

4 Note that the integer program allows the possibility of allocating more than one item to a winning bid but that
this does not change the value of the objective and is not useful.
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proof Suppose that random tie-breaking is invariant to reported arrival and
departure. The auction is strongly truthful because the allocation function is
monotone: if agent i wins in some period t ∈ [ai, di] then it continues to win
either earlier or in the same period for w′

i > wi , and for a′
i < ai or d ′

i > di . For
competitiveness, consider a set of types θ and establish that the greedy online
allocation rule is 2-competitive by a charging argument. For any agent i that
is allocated offline but not online, charge its value to the online agent that was
allocated in period t in which agent i is allocated offline. Since agent i is not
allocated online, it is present in period t , and the greedy rule allocates to another
agent in that period with at least as much value as agent i. For any agent i that is
allocated offline and also online, charge its value to itself in the online solution.
Each agent that is allocated in the online solution is charged at most twice, and
in all cases for a value less than or equal to its own value. Therefore the optimal
offline value V ∗(θ) is at most twice the value of the greedy solution.

We now understand that the decision policy in Auction 1 was monotonic but that
Auction 1 was not truthful because the payments were not critical-value payments.

It is interesting to note that there is a 1.618-competitive online algorithm for this
problem. However, this algorithm is not monotonic and cannot be implemented truth-
fully. In fact, we have a tight lower bound for the problem of achieving efficiency and
truthfulness.

Theorem 16.18 No truthful, IR, and deterministic online auction can obtain a
(2 − ε)-approximation for efficiency in the expiring items environment with no
early-arrival and no late-departure misreports, for any constant ε > 0.

proof Fix ε > 0, consider T = {1, 2} and construct the following three
scenarios: (i) Consider agents θ1 = (1, 1, q(1 + δ)), θ2 = (1, 2, q), and choose
0 < δ < ε

1−ε
so that q(1+δ)

q(2+δ) < 1
2−ε

and the auction must allocate to both agents to
be (2 − ε)-competitive. Let q ≥ vc

(1,1)(θ2) (dropping dependence on ω because
there are no stochastic events to consider), so that agent 1 must have strictly
positive utility since the price is independent of reported value (for truth-
fulness) and less than or equal to vc

(1,1)(θ−1) for IR. (ii) As in (i) except
θ1 → θ ′

1 = (1, 2, q(1 + δ)) and a new type θ3 = (2, 2, ∞) is introduced. Agent
1 must be allocated else it can report type θ1. Moreover, agent 1 must be al-
located in period 1 because otherwise the mechanism cannot compete when θ3

arrives. Agent 2 is not allocated. (iii) As in (i) except θ1 → θ ′
1 = (1, 2, q(1 + δ))

and θ2 → θ ′
2 = (1, 1, q). The auction must allocate to both agents to be (2 − ε)-

competitive. Further assume that q > vc
(1,1)(θ

′
1), which is without loss of generality

because if q = vc
(1,1)(θ

′
1) then we can repeat the analysis with q ′ = αq for α > 1

replacing q throughout. But now agent 2 with type θ ′
2 has strictly positive utility

since its payment is no greater than its critical value and the auction is not truthful
in scenario (ii) because agent 2 can benefit by deviating and reporting θ ′

2.

The following provides a technical justification for why the no late-departure mis-
reports assumption is required in this environment.
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Theorem 16.19 No truthful, IR, and deterministic online auction can obtain a
constant approximation ratio for efficiency in the expiring items environment with
no early-arrival misreports but arbitrary misreports of departure.

proof Consider M periods. Fix θ−i . Fix vc
(1,1)(θ−i) < ∞ (dropping depen-

dence on ω because there are no stochastic events to consider). First show that
any agent with type θi = (1, M, wi) for wi > vc

(1,M)(θ−i) must be allocated in pe-
riod 1. For this, first show that vc

(1,M)(θ−i) = vc
(1,1)(θ−i). Construct θ ′

i = (1, M, w′
i)

with w′
i = vc

(1,1) + ε, some ε > 0. By truthfulness and thus monotonicity we have
vc

(1,M)(θ−i) ≤ vc
(1,1)(θ−i) and agent i must be allocated. Moreover, it must be al-

located in period 1 else an adversary can generate M − 1 bids {(t, t, βt−1)} for
large β > 0 and t ∈ {2, . . . , M}, all of which must be accepted for the auction
to be constant competitive. But in this case the agent should deviate and re-
port (1, 1, w′

i), and be allocated in period 1 with payment vc
(1,1)(θ−i) < w′

i and
have positive utility. Since type (1, M, w′

i) is allocated in period 1, we must
have vc

(1,M)(θ−i) = vc
(1,1)(θ−i) by truthfulness and the critical-payment lemma

else type (1, 1, w′
i) can deviate and report (1, M, w′

i) and do better. Consider
again type (1, M, wi), we now have wi > vc

(1,M)(θ−i) ⇒ wi > vc
(1,1)(θ−i) and the

agent must be allocated in period 1. To finish the proof, now construct type pro-
file θ = {(1, M, q1), . . . , (1, M, qM )} with q1, . . . , qm unique values drawn from
[q, q + δ] for some q > 0 and δ > 0. For any i, we must have vc

(1,1)(θ−i) < ∞
else the mechanism is not competitive because the adversary could replace
type i with θ ′

i = (1, 1, w′′
i ) and some arbitrarily large w′′

i . We can also assume
qi ≥ vc

(1,M)(θ−i) ⇒ qi > vc
(1,M)(θ−i), which can be achieved by a slight upward

perturbation of any value qi = vc
(1,M)(θ−i). Finally, the online mechanism can

allocate at most one of these bids since any bid allocated must be allocated in
period 1 and can achieve value at most q + δ while the efficient offline allocation
has value V ∗(θ) ≥ Mq. Thus, no constant approximation is possible because M

can be selected to be arbitrarily large.

16.3.3 Example: An Adaptive, Limited-Supply Auction

For our second detailed example, we consider an environment with a single, indi-
visible item to be allocated to one of N agents. Each agent’s type is still denoted
θi = (ai, di, wi) ∈ T × T × R>0, with wi denoting the agent’s value for the item. This
fits into the known interesting-set model. We assume no early-arrival misreports but
will allow arbitrary misreports of departure. Our goal is to define an auction with good
revenue and efficiency properties. We will work with a weaker adversarial model than
in the setting with expiring items.

We relate this dynamic auction problem to the classical secretary problem, a well-
studied problem in optimal stopping theory:

The Secretary Problem. An interviewer meets with each from a pool of N job appli-
cants in turn. The total number of applicants is known. Each applicant has a quality
and the interviewer learns, upon meeting, the relative rank of each applicant among
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those already interviewed and must make an irrevocable decision about whether or not
to hire the applicant. The goal is to hire the best applicant. By the “random-ordering
hypothesis,” an adversary can choose an arbitrary set of N qualities but cannot control
the assignment of quality to applicant, rather this is sampled uniformly at random
and without replacement from the set. The problem is to design a stopping rule that
maximizes the probability of hiring the highest rank applicant, in the worst case for
all possible adversarially selected inputs. Say that a candidate is the most qualified
of all applicants seen so far. The optimal policy (i.e., the policy that maximizes the
probability of selecting the best applicant, in the worst case) is to interview the first
t − 1 applicants and then hire the next candidate (if any), where t is defined by

N∑

j=t+1

1

j − 1
≤ 1 <

N∑

j=t

1

j − 1
. (16.9)

For instance, with N = 10,000 the optimal t is 3,680, i.e., sample 3,679 applicants and
then accept the next candidate. As N → ∞, the probability of hiring the best applicant
approaches 1/e, as does the ratio t/N , and the optimal policy in this big N limit
is to sample the first �N/e� applicants and then immediately accept any subsequent
candidate.

We can reinterpret the secretary problem in the auction context. Bidders, unlike the
applicants in the classic model, are strategic and can misrepresent their value and time
their entry into the market. Bidders also have both an entry and an exit time. We modify
the adversarial model in the secretary problem while retaining the random-ordering
hypothesis: an adversary picks a set of values and a set of arrival–departure intervals and
agent types are then defined by sampling uniformly at random and without replacement
from each set.5

In addition to efficiency, we will also consider revenue as an optimality criterion.
The auction’s revenue for type profile θ is defined as Rev(p(θ)) = ∑

i pi(θ), where
notation pi(θ) denotes the (expected) payment by agent i given type profile θ . Notation
ω ∈ � is suppressed because there are no external stochastic events in the problem.
For an offline benchmark we consider the revenue from an offline Vickrey auction and
define R∗(θ) as the second-highest value in type profile θ . An online mechanism is
c-competitive for revenue if

min
z∈Z

E

{
Rev(p(θz))

R∗(θz)

}
≥ 1

c
, (16.10)

where z ∈ Z is the set of inputs available to an adversary, in this case choosing the
two sets described above, and the expectation here is taken with respect to the random
choice of the sampling process that matches values with arrival–departure intervals.

As we have seen, the optimal policy for the secretary problem has a learning
phase followed by an accepting phase. For a straw-man online auction interpreta-
tion, consider: observe the first �N/e� reports and then price at the maximal value
received so far, and sell to the first agent to subsequently report a value greater than

5 By an averaging argument, our results for randomly ordered inputs imply the same (upper-bound) competitive-
ratio analysis when the bids consist of i.i.d. samples from an unknown distribution.
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this price. Break ties at random. The following example shows that this fails to be
truthful.

Example 16.20 Consider six agents, with types θi = (ai, di, wi) and θ1 =
(1, 7, 6), θ2 = (3, 7, 2), θ3 = (4, 8, 4), θ4 = (6, 7, 8), and agents 5 and 6 arriving
in later periods. The transition to the accepting phase occurs after �6/e� = 2 bids.
Agent 4 wins in period 6 and makes payment 6. If agent 1 reports θ ′

1 = (5, 7, 6),
then it wins in period 5, for payment 4.

The auction is truthful when all agents are impatient (ai = di) but fails to be truthful
in the general setting with patient agents because the allocation policy is not monotonic
with respect to arrival time. Consider instead the following simple variation.

Auction 3. A bid from an agent is a claim about its type, θ̂i = (âi , d̂i , ŵi), neces-
sarily made in period t = âi .

(i) (Learning): In period τ in which the �N/e�th bid is received let p ≥ q be the
top two bid values received so far.

(ii) (Transition): If an agent bidding p is still present in period τ then sell to that
agent (breaking ties at random) at price q.

(iii) (Accepting): Else, sell to the next agent to bid a price at least p (breaking ties at
random), collecting payment p.

Theorem 16.21 Auction 3 is strongly truthful in the single-unit, limited supply
environment with no early-arrival misreports.

proof Assume that the method used to break ties is independent of the reported
departure time of an agent. Fix θ−i . Monotonicity is established by case analysis
on type θi : (a) If di is to the left of the transition, the agent is not allocated
and monotonicity trivially holds. (b) If [ai, di] spans the transition, agent i does
not trigger the transition, and it wins with wi > q then there is no tie-breaking
and the agent continues to win for an earlier arrival or later departure (because
this changes nothing about the price it faces when the transition occurs), and
continues to win with a higher value. (c) If arrival, ai , is after the transition and
agent i wins with wi > p (and perhaps winning a random selection over another
agent j arriving in the same period also with wj > p) then it continues to win
with an earlier arrival (even one that occurs before the transition because its value
will define p), with a later departure (because tie-breaking is invariant to reported
departure) and with a higher value. (d) If the agent triggers the transition and
wins with wi > q then its value wi = p, there was no tie to break, and the agent
continues to win for an earlier arrival (although at some point the transition will be
triggered by the next earliest agent to arrive), for a higher value, and is unaffected
by a later departure. The payment is the critical value, namely q in case (b) and (d)
and p in case (c). Moreover, the policy is monotonic-late: in case (b) the critical
value is infinite for all departures before the transition but constant with respect
to departure otherwise and the critical departure period is that of the transition; in
cases (c) and (d) the critical value payment is independent of departure time and
the critical departure period is equal to the arrival period.
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Example 16.22 Return to the earlier example with six agents and types θ1 =
(1, 7, 6), θ2 = (3, 7, 2), θ3 = (4, 8, 4), θ4 = (6, 7, 8), with agents 5 and 6 arriving
in later periods. The transition to the accepting phase occurs upon the arrival
of agent 2. Then p = 6, q = 2, and agent 1 wins for 2. Consider instead that
θ ′

1 = (1, 2, 6). The transition still occurs upon the arrival of agent 2 but now the
item is sold in period 6 to agent 4 for a payment of 6. An agent with true type θ ′

1 does
not want to report θ1 because of the monotonic-late property: although it would
win, it would not be allocated until period 3, and this is after its true departure.

Theorem 16.23 Auction 3 is e + o(1)-competitive for efficiency and e2 + o(1)-
competitive for revenue in the single-unit, limited supply environment in the limit
as N → ∞.

proof Let τ = �N/e�. For efficiency, our competitive ratio is at least as great
as the probability of selling to the highest value agent. Conditioned on selling at
the transition, the probability that we sell to the highest value agent is at least
�N/e�

N
= 1/e − o(1). Conditioned on selling after the transition, the probability of

this event is 1/e − o(1) according to the analysis of the classical secretary problem.
For revenue, our competitive ratio is at least as great as the probability of selling
to the highest value agent at a price equal to the second-highest bid. Conditioned
on selling at the transition, the probability of this event is (1/e)2 − o(1) (i.e., the
probability that both the highest and second-highest value agents arrive before
period τ ). Conditioned on selling after the transition, the probability of this event
is (1/e)(1 − 1/e) − o(1), i.e., the probability that the second-highest value agent
arrives before τ and the highest value agent arrives after τ . The unconditional
probability of selling to the highest value agent at the second-highest price is a
weighted average of the two conditional probabilities computed above, hence it
is at least (1/e)2 − o(1).

The random-ordering hypothesis has a critical role in this analysis: there is no
constant competitive mechanism in this environment for the adversarial model adopted
in our analysis of the expiring items environment.

For the secretary problem it is well known that no stopping rule can achieve asymp-
totic success probability better than 1/e. The same lower bound can be established in
our setting, even though the mechanism has richer feedback (i.e., it sees numbers not
ranks) and even though an allocation to some bidder other than the highest-rank bidder
will contribute to expected efficiency. The proof of this result is beyond the scope of
this chapter.6

16.3.4 Remarks

We end this section with some general remarks that mostly seek to place the study
of online mechanisms in single-valued preference domains in the broader context of
computational mechanism design.

6 One shows that for any stopping rule there is some distribution that is hard in the sense that the second-highest
value in the sequence is much less than the highest value with high probability. Given this, the expected efficiency
ratio of the allocation is determined, to first order, by the probability of awarding the item to the highest bidder.
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Ex-post IC. A mechanism is ex-post IC if truth revelation is a best-response con-
tingent on other agents being truthful, and whatever the types of other agents (and
thus for all possible futures in the context of online MD). In offline mechanisms the
solution concepts of ex-post incentive compatible (EPIC) and DSIC are equivalent
with private value types. This equivalence continues to hold for closed online mecha-
nisms that provide no feedback to an agent before it submits a bid. However, an online
mechanism that provides feedback, for instance prices, or in an extreme case reports
of current bids, loses this property. The report of an agent can now be conditioned
on the reports of earlier agents, and monotonicity provides EPIC but not necessarily
DSIC. Consider again Auction 2 in the expiring items environment, with true types
θ1 = (1, 2, 100), θ2 = (1, 2, 80), and θ3 = (2, 2, 60). If the bids are public then a pos-
sible (crazy) strategy of agent 3 is to condition its bid as possible: “bid (2, 2, 1000) if a
bid of (1, 2, 100) is received or bid (2, 2, 60) otherwise.” Agent 1 will now pay 60 if it
bids truthfully, but would pay 60 with a bid of (1, 2, 90). Nevertheless, truthful bidding
is a best response when other agents bid truthfully.

Simple price-based online auctions. One straightforward method to construct
truthful online auctions for known-set, single-valued environments is to define
an agent-independent price schedule qt

i (L, θ−i , ω) ∈ R to agent i for interesting
decision set L ∈ Li , given stochastic events ω ∈ �, where qt

i (L, θ−i , ω) de-
fines the price for a decision in set L in period t . Given this, define payment
p(ai ,di ,Li )(θ−i , ω) = mint∈[ai ,di ] q

t
i (Li, θ−i , ω) and let t∗(ai ,di ,Li )

(θ−i , ω) denote the first
period t ∈ [ai, di] in which qt

i (Li, θ−i , ω) = p(ai ,di ,Li )(θ−i , ω). Then, decision policy π

that allocates to agent i with type θi = (ai, di, (ri, Li)) if and only if ri ≥ qt
i (Li, θ−i , ω)

in some t ∈ [ai, di], with the allocation period t ≥ t∗(ai ,di ,Li )
(θ−i , ω), is monotonic-late

and the associated critical-value payment is just p(ai ,di ,Li )(θ−i , ω). Working with price
schedules is quite natural in many domains, although not completely general, as shown
in the following example:

Example 16.24 Consider the canonical expiring items environment. Fix
θ−i , and consider a monotonic-late policy π with critical-value vc

(1,2)(θ−i) =
20, vc

(1,1)(θ−i) = vc
(2,2)(θ−i) = 30 (dropping dependence on ω because there are

no stochastic events to consider). This policy allocates to type θi = (1, 2, 25) in
period 2 but not type θ ′

i = (1, 1, 28) or θ ′
i (2, 2, 28). No simple price schedule

corresponds to this policy, because it would require q1
i (θ−i) > 28, q2

i (θ−i) > 28
but min(q1

i (θ−i), q2
i (θ−i)) ≤ 25.

The role of limited misreports. Consider again the above example. The price on an
allocation to agent i in period 2 depends on its report: if the agent’s type is θi = (2, 2, wi)
then the price is 30 but if the agent’s type is θi = (1, 2, wi) then the price is 20. This
is at odds with the principle of “agent-independent prices” that drives the standard
analysis of truthful mechanisms. The example also fails weak-monotonicity, which is
generally necessary for truthfulness.7

7 A social choice function f : � → O satisfies weak monotonicity if and only if for any θi ∈ �i , agent i, and
θ−i ∈ �−i , then f (θi , θ−i ) = a and f (θ ′

i , θ−i ) = b implies that vi (b, θ ′
i ) − vi (b, θi ) ≥ vi (a, θ ′

i ) − vi (a, θi ). In
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What is going on? In both cases, the reason for this departure from the standard theory
for truthful mechanism design is the existence of limited misreports. The auction would
not be truthful with early-arrival misreports because an agent with type (2, 2, 28) could
usefully deviate and report (1, 2, 28). For limited misreports C(θi) ⊆ �i that satisfy
transitivity (which holds for the no-early arrival and no-late departure assumptions that
are motivated in online MD), so that θ ′

i ∈ C(θi) and θ ′′
i ∈ C(θ ′

i ) implies θ ′′
i ∈ C(θi), the

payment pi(k, θi, θ−i , ω) collected from agent i conditioned on outcome k ∈ O, must
satisfy pi(k, θi, θ−i , ω) = min{pi(k, θ̂i , θ−i , ω) : θ̂i ∈ C(θi), π(θ̂i , θ−i , ω) = k}, or ∞
if no such θ̂i exists, for all i, all k ∈ O and all ω ∈ �. Limited dependence on the
reported type is possible as long as the price is independent across available misreports.
For unlimited misreports we recover the standard requirement that prices are agent-
independent.

So, the temporal aspect of online MD is both a blessing and a curse: on one hand we
can justify limited misreports and gain more flexibility in pricing and in the timing of
allocations, on the other hand decisions must be made in ignorance about future types.

Relaxing the known interesting-set assumption. We assumed that the interesting set
Li ∈ Li was known by the mechanism. Domains in which the interesting set is private
information to an agent can be handled by making the following modifications to the
framework:

(i) Require that agent i’s domain of interesting sets Li = {L1, . . . , Lm}, defines disjoint
sets so that L1 ∩ L2 = ∅ for all L1, L2 ∈ Li .

(ii) Require that a decision policy π is minimal so that it never makes decision kt ∈ L for
some L �L Li in some period t ∈ [ai, di], given reported type θi = (ai, di, (ri, Li)).

(iii) Extend the partial-order so that

θ1 �θ θ2 ≡ (a1 ≥ a2) ∧ (d1 ≤ d2) ∧ (r1 ≤ r2) ∧ (L1 �L L2), (16.11)

and adopt this partial order in defining monotonicity.

Given these modifications, the general methods developed above for the analysis of
online mechanisms continue to hold. For instance, a monotonic, minimal, and deter-
ministic policy continues to be truthful when combined with critical-value payments,
and monotonicity remains necessary for truthfulness amongst minimal, deterministic
policies. This is left as an exercise.

The requirement that interesting sets are disjoint can significantly curtail the general-
ity of preference domains that can be modeled. It is especially hard to model substitutes
preferences, for instance indifference across a set of items. Suppose that the items are
fruit, with G = {apple, banana, pear , lime, lemon}. With known interesting sets,
we can model an agent with a type that defines a value for receiving an item from any
subset of the domain G. With unknown interesting sets, we must now assume that there
is some partition, for instance into {{apple, pear}, {banana}, {lime, lemon}} so that
the agent has either the same value for an apple or a pear and no value for anything

the example, when agent i changes its type from (1, 2, 25) to (2, 2, 28) it increases its relative value for an
allocation in period 2 over no allocation, but the decision policy switches away from allocating to the agent in
period 2.
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else, or value for a banana and no value for anything else, or value for a lime and a
lemon but no value for anything else.

Stochastic policies. Stochastic decision policies can be important, both algorithmically
(many computational methods for online decision use a probabilistic model to sample
possible state trajectories) and also to allow for tie breaking while retaining anonymity.

So far we have handled this by requiring strong-truthfulness. More generally, a
stochastic mechanism is DSIC when truthful reporting maximizes expected utility for
an agent (with the expectation defined with respect to randomization in the policy),
and for all reports of other agents, and all external stochastic events, ω ∈ �. To handle
this, we now πi(θi, θ−i , ω) ∈ [0, 1] to denote the probability that agent i receives an
interesting decision (“is allocated”), given type θi , types θ−i and (external) stochastic
events ω. The appropriate generalization of monotonicity to stochastic policies requires,
for every θi = (ai, di, (ri, Li)), all θ−i , all ω ∈ �, that

πi((ai, di, (ri, Li)), θ−i , ω) ≥ πi((ai, di, (r ′
i , Li)), θ−i , ω), ∀ri ≥ r ′

i , (16.12)

and
∫ ri

x=0
πi((ai, di, (x, Li)), θ−i , ω) dx ≥

∫ ri

x=0
πi((a

′
i , d

′
i , (x, Li)), θ−i , ω) dx, (16.13)

for all a′
i ≥ ai , d ′

i ≤ di . The critical value payment becomes

vc
(ai ,di ,(ri ,Li ))(θ−i , ω) = πi(θ, ω)ri −

∫ ri

x=0
πi((ai, di, (x, Li)), θ−i , ω) dx (16.14)

These definitions of monotonicity and critical-value payment reduce to the earlier cases
when the policy is deterministic.

Theorem 16.25 A stochastic decision policy π can be implemented in a truthful,
IR mechanism that does not pay unallocated agents in a domain with (known
interesting set) single-valued preferences and no early-arrival or late-departure
misreports if and only if the policy is monotonic according to (16.12) and (16.13).

The payment collected from allocated agents is the critical-value payment. The
following example illustrates a stochastic policy that satisfies this monotonicity re-
quirement.

Example 16.26 Consider a domain with no early arrival and no late departure
misreports, two time periods T = {1, 2}, fix θ−i , and consider agent i with a
single-item valuation and possible types �i = {(1, 1, wi), (1, 2, wi), (2, 2, wi)}.
For impatient type (1, 1, wi), consider policy

πi((1, 1, wi), θ−i) =
⎧
⎨

⎩

0, if wi ≤ 8
wi−8

2 , if 8 < wi ≤ 10
1, otherwise.

(16.15)
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Solving for the critical value payment (16.14), we find

vc
(1,1,wi )(θ−i) =

⎧
⎨

⎩

0, if wi ≤ 8
w2

i

4 − 16, if 8 < wi ≤ 10
9, otherwise.

(16.16)

The policy and critical value payment is defined identically for type (2, 2, wi).
For patient type (1, 2, wi), consider policy

πi((1, 2, wi), θ−i) =
⎧
⎨

⎩

wi

20 , if 0 ≤ wi ≤ 10
wi−5

10 , if 10 < wi ≤ 15
1, otherwise

(16.17)

and the critical value payment, from (16.14), is

vc
(2,2,wi )(θ−i) =

⎧
⎪⎪⎨

⎪⎪⎩

w2
i

40 , if 0 ≤ wi ≤ 10
w2

i

20 − 5
2 , if 10 < wi ≤ 15

8.75, otherwise.

(16.18)

Notice that πi((1, 1, 10), θ−i) = 1 and πi((1, 2, 10)) = 0.5, contradicting more
simplistic notions of monotonicity, but that truthfulness is retained because
vc

(1,1,10)(θ−i) = 9 while vc
(1,2,10)(θ−i) = 2.5. Although type (1, 2, 10) can misre-

port to (1, 1, 10) and be allocated with certainty, it prefers to report (1, 2, 10)
because its expected utility is (0.5)(10 − 2.5) + (0.5)(0) > (1.0)(10 − 9). We
leave as an exercise to check that these policies satisfy monotonicity, with∫ wi

x=0 πi((1, 2, x), θ−i)dx ≥ ∫ wi

x=0 πi((1, 1, x), θ−i) for all wi .

We make a final remark about stochastic policies. In an environment with a prob-
abilistic model that is common knowledge, and that defines both a probability distri-
bution for agent types and for stochastic events ω ∈ �, we can settle for a weaker
monotonicity requirement in which (16.12) and (16.13) are satisfied in expectation,
given the model. However, this provides BNIC but not DSIC since monotonicity may
not hold out of equilibrium when other agents are not truthful, since the probabilistic
model of agent types upon which monotonicity is predicated would then be incorrect.

16.4 Bayesian Implementation in Online Domains

In this section we focus on Bayesian implementation of expected value-maximizing
policies in environments in which the designer and every agent has a correct, prob-
abilistic model for types and uncertain events, and this is common knowledge. We
consider the goal of value maximization and present a dynamic variation of the of-
fline Vickrey–Clarke–Groves (VCG) mechanism. This will involve computing ex-
pected value maximizing sequential decision policies and raise a number of computa-
tional challenges. We will see that the dynamic VCG mechanism is BNIC rather than
DSIC, with incentive-compatibility contingent on future on-equilibrium play by all
participants.
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16.4.1 A General Model

A Markov decision process (MDP) provides a useful formalism for defining on-
line mechanisms in model-based environments with general agent preferences. An
MDP model (H, K,P, R) is defined for a set of states H , feasible decisions K(h) in
each state, a probabilistic transition function P(ht+1|ht , kt ) on the next state given
current state and decision (with

∑
h′∈Ht+1 P(h′|ht , kt ) = 1) and a reward function

R(ht , kt ) ∈ R for decision kt in state ht . The Markov property requires that feasi-
ble decisions, transitions, and rewards depend on previous states and actions only
through the current state. It is achieved here, for example, by defining ht ∈ Ht =
(θ1, . . . , θ t ; ω1, . . . , ωt ; k1, . . . , kt−1) so that the state captures the complete history of
types, stochastic events, and decisions. In practice, a short summarization of state ht is
often sufficient to retain the Markov property.

Given a social planner interested in maximizing total value, then define reward
R(ht , kt ) = ∑

i∈I (ht ) Ri(ht , kt ), with I (ht ) used to denote the set of agents present in

state ht and agent i’s reward Ri(ht , kt ) is defined so that vi(θi, k) = ∑di

t=ai
Ri(ht , kt )

for all sequences of decisions k. For finite time horizons, the expected value of policy
π in state ht is V π (ht ) = Eπ {∑|T |

τ=t R(hτ , πτ (hτ ))}, where the expectation is taken
with respect to the transition model and given the state-dependent decisions implied by
policy π. For infinite time horizons, a standard approach is to define a discount factor
γ ∈ (0, 1) so that the expected discounted value of policy π in state ht is V π (ht ) =
Eπ {∑∞

τ=t γ
τ−tR(hτ , πτ (hτ ))}. This makes sense in a multiagent environment when

every agent has the same discount factor γ .
Given MDP value, V π (ht ), then the optimal policy π∗ maximizes this value, V π (ht ),

in every state ht . For instance, in the finite time-horizon (no discounting) setting, the
optimal MDP-value function, V ∗, is defined to satisfy recurrence:

V ∗(h) = max
k∈Kt (h)

[
R(h, k) +

∑

h′∈Ht+1

P(h′|h, k)V ∗(h′)

]
, (16.19)

for all time t and all h ∈ Ht . Given this, the optimal decision policy solves:

π∗(h ∈ Ht ) ∈ arg max
k∈Kt (h)

[
R(h, k) +

∑

h′∈Ht+1

P(h′|h, k)V ∗(h′)

]
. (16.20)

Of course, the type information within the state is private to agents and we will need
to provide incentive compatibility so that the policy has the correct view of the current
state.

Example 16.27 The definition of state, feasible decision, and agent type is as
in Example 16.3. The transition function P(ht+1|ht , kt ) is constructed to reflect
a probabilistic model of new agent arrivals, and also the allocation decision. The
MDP reward function, R(ht , kt ), can be defined with R(ht , kt ) = wi if decision
kt allocates the item to agent i, for some agent i present in the state, and zero
otherwise.
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16.4.2 A Dynamic Vickrey–Clarke–Groves Mechanism

For concreteness, consider an environment with a finite time horizon and no discount-
ing, and with the optimal MDP value V ∗(h) defined as the total expected reward from
state h until the time horizon. We make some remarks about how to handle an infinite
time horizon in Section 16.4.3. Consider the following dynamic VCG mechanism.8

We assume that the decisions and reports in previous periods t ′ < t are all public in
period t , although similar analysis holds without this.

Auction 4. The dynamic VCG mechanism for the finite time horizon and no-
discounting online MD environment works as follows:

(i) Each agent, i, reports a type θ̂i in some period âi ≥ ai .
(ii) Decision policy: Implement optimal policy π∗, which maximizes the total ex-

pected value, assuming the current state as defined by agent reports is the true
state.

(iii) Payment policy: In an agent’s reported departure period, t = d̂i , collect payment

xt
i (h

t ) = vi(θ̂i , π
∗(θ≤t , ω≤t )) − [

V ∗(hâi ) − V ∗(hâi

−i)
]
, (16.21)

where π∗(θ≤t , ω≤t ) denotes the sequence of decisions made up to and including
period t based on types θ≤t and stochastic events ω≤t , V ∗(ht ) is the optimal MDP
value in state ht , and ht

−i defines the (counterfactual) MDP state constructed to
be equal to ht but removing agent i’s type from the state. The payment is zero
otherwise.

Agent i’s payment is its ex-post value discounted by term (V ∗(hâi ) − V ∗(hâi

−i)),
which is the expected marginal value it contributes to the system as estimated upon its
arrival and based on its report. With this, the expected utility to agent i when reporting
truthfully is equal to the expected marginal value that it contributes to the multiagent
system through its presence.

For incentive-compatibility, we need the technical property of stalling, which re-
quires that the expected value of policy π∗ cannot be improved (in expectation) by
delaying the report of an agent.9 In addition, we assume an independence property;
namely, the probabilistic process defining the arrival of agents other than i is indepen-
dent of whether or not agent i has arrived.

Theorem 16.28 The dynamic VCG mechanism, coupled with a policy that sat-
isfies stalling, is Bayes–Nash incentive compatible (BNIC) and implements the
expected-value maximizing policy, in a domain with no early-arrival misreports
but arbitrary misreports of departure.

proof Consider the expected utility (defined with respect to its information in
period ai) to agent i for misreport θ̂i ∈ C(θi). Let c ≥ 0 denote the number of

8 The mechanism is presented in the no early-arrival misreports model but remains BNIC without this assumption.
9 This is typically reasonable, for example any optimal policy that is able to delay for itself any decisions that

pertain to the value of an agent will automatically satisfy stalling.
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periods by which agent i misreports its arrival time. The agent’s expected utility
is

Eπ∗ {vi(θi, π
∗(hai ))|θ̂i} +Eπ∗

{ |T |∑

t=ai+c

R−i(h
t , π∗(ht ))

}
−Eπ∗

{
V ∗(hai+c

−i )
}
.

(A) (B) (C)

Term (A) denotes the expected value to agent i given its misreport. Term (B),
which denotes the total expected value to other agents forward from reported
arrival, ai + c, given agent i’s misreport, corresponds to the expected value of
terms {−vi(θ̂i , π

∗(θ≤d̂i , ω≤d̂i )) + V ∗(hâi )} in the payment. Notation R−i denotes
the total reward that accrues due to all agents except agent i. Term (C), which
denotes the total expected value to other agents forward from period ai + c, but
with agent i removed, corresponds to the final term in the payment. Now, add term
Eπ∗ {∑ai+c−1

t=ai
R−i(ht , π∗(ht ))} to term (B) and subtract it again from term (C).

The adjusted term (C′) is now agent independent (by the independence property)
and can be ignored for the purpose of establishing BNIC. Term (A) combined
with adjusted term (B′) is the expected value to all other agents forward from
period ai , plus the expected true value to agent i. Agent i’s best response is to
report its true type (and immediately upon arrival) because the policy π∗ is defined
to maximize (A)+(B’) when the other agents are truthful, i.e. in a Bayes–Nash
equilibrium.

It bears repeating that truth telling is not a dominant strategy equilibrium. We have
instead BNIC because the correctness of the policy depends on the center having
the correct model for the distribution on agent types. Without the correct model, the
policy is not optimal in expectation and an agent with beliefs different from that of the
center may be able to improve (its belief about) the expected utility it will receive by
misreporting its type and thus misrepresenting the state.10

16.4.3 Remarks

We end this section with some general remarks that touch on the computational aspects
of planning in model-based environments, and also describe a couple of additional
environments in which dynamic VCG mechanisms can be usefully applied.

Computational notes. Many algorithms exist to compute optimal decision policies
in MDPs. These include dynamic programming, value iteration, policy iteration, and
LP-based methods. However, the state space and action space for real-world online
MD problems are large and approximations will typically be required. One appealing
method is to couple the VCG mechanism with an online, sampling-based approximation
algorithm. Rather than compute a priori an entire policy for every possible state one can

10 Ex-post IR is achieved when the environment satisfies agent-monotonicity, which requires that introducing an
agent increases the MDP value of any state. The payments collected by the mechanism are nonnegative in
expectation (ex ante BB) when the environment satisfies no positive externalities, which requires that the arrival
of an agent does not have a positive expected effect on the total value of the other agents.
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determine the next decision to make in state ht by approximating the decision problem
forward from that state. Given an ε-approximation, the dynamic VCG mechanism is
ε-BNIC, in the sense that no agent can gain more than some amount ε > 0 (that can be
made arbitrarily small) by deviating from truthful reporting, as long as the other agents
are truthful and an ε-accurate estimate of the optimal MDP value is also available. One
class of online, sparse-sampling algorithms work by building out a sample tree of future
states based on decisions that could be made by the policy forward to some look-ahead
horizon. These algorithms have run time that is independent of the size of the state space
but scales exponentially in the number of decisions and in the look-ahead horizon. More
recently, a family of stochastic online combinatorial optimization algorithms has been
proposed that seem especially applicable to online MD environments. The algorithms
solve a subclass of MDPs in which the realization of uncertainty is independent of
any decision. This is often a natural assumption for truthful dynamic auctions: the
allocation decisions made by an IC auction will not affect the reports of agents, and
thus the realization of new types is independent of decisions.

Infinite time horizon and discounting. The dynamic VCG mechanism can be ex-
tended to handle an infinite time horizon when every agent has a common discount
factor. Rather than collect a payment once, upon departure, a payment can be collected
from agent i in each period, so as to align its utility stream with the expected, marginal
stream of value that it contributes through its presence in the multiagent system.

Coordinated learning. A variant on the dynamic VCG mechanism can be used to
support optimal, coordinated learning among a fixed population of self-interested
agents. Suppose that in addition to influencing the reward received by an agent in
each time period, the decisions made by a mechanism also reveal information that
an agent can use to update its belief about its type; i.e., types are revealed online. A
simple model is provided by a multiagent variation on the classical multi-armed bandits
problem. Each agent owns an “arm” and receives a reward when its arm is activated,
sampled from a stationary distribution. The reward signals are privately observed and
allow an agent to update its model for the reward on its arm. In a setting with an
infinite time horizon and discounting, one can use Gittins’ celebrated index policy
to characterize an efficient online policy that makes the optimal trade-off between
exploitation and exploration. In the presence of self-interest, a variant on the dynamic
VCG mechanism can provide incentives to support truthful reporting of reward signals
by each agent, and thus implement the efficient learning policy.

16.5 Conclusions

We briefly consider some of the many possible future research directions in the area of
online mechanism design:

� Revenue: Little work exists on the design of revenue-maximizing online mechanisms
in model-based environments. For example, the problem of designing an analog to
Myerson’s optimal auction is only partially solved, even in the very simplest of online
settings.
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� Learning by the center: It is interesting to allow the mechanism to improve its proba-
bilistic model of the distribution on agent types across time, while retaining incentive
compatibility along the path of learning, and seek to converge to an efficient or revenue-
optimal mechanism.

� Alternative solution concepts: Introduce weaker solution concepts than DSIC that avoid
the strong common knowledge assumptions that are required to justify BNIC analysis.
These could include, for instance, set Nash equilibria, implementation in undominated
strategies, or implementation in minimax-regret equilibria and other robust solution
concepts.

� Endogenous information: Extend online MD to domains in which decisions made by
the mechanism affect the information available to agents about their types; i.e., cast
online MD as a general problem of coordinated learning by self-interested agents in an
uncertain environment.

� Richer domains: The current work on dominant-strategy implementation is limited
to single-valued preference domains with quasi-linear utilities. Simple generalizations,
such as to an environment in which some agents want an apple, some a banana, and some
are indifferent across an apple and a banana do not satisfy the partition requirement on
the structure of interesting sets and remain unsolved. Similar complications occur when
one incorporates budget constraints, or generalizes to interdependent valuations. With
time, perhaps progress can be made on the problem of online combinatorial auctions
(and exchanges) in their full generality.

16.6 Notes

Lavi and Nisan (2000) coined the term online auction and initiated the study of truthful
mechanisms in dynamic environments within the computer science literature. Friedman
and Parkes (2003) later coined the term online mechanism design. The characterization
of monotonicity requirements for truthful online mechanisms in single-valued domains
is based on Hajiaghayi et al. (2005), with extensions to single-valued preferences
building on Babaioff et al. (2006), see also Chapter 12.11 Weak-monotonicity and its
role in truthful mechanism design are discussed in Bikhchandani et al. (2006).

The discussion of the secretary problem and adaptive truthful auctions in the single-
item setting is based on Hajiaghayi et al. (2004); see Babaioff et al. (2007) for a recent
extension and (Gilbert and Mosteller, 1966; Dynkin, 1963) for classic references. The
discussion of online mechanisms for expiring items is based on Hajiaghayi et al. (2005),
and the negative result is due to Lavi and Nisan (2005), who also adopted an alternate
solution concept in their analysis; see also (Ng et al., 2003; Porter, 2004; Juda and
Parkes, 2006) and Awerbuch et al. (2003). Additional models of dynamic auctions in
the computer science literature include unlimited supply, digital goods (Bar-Yossef
et al., 2002; Blum et al., 2003; Blum and Hartline, 2005), two-sided auctions with both
buyers and sellers (Bredin and Parkes, 2005; Blum et al., 2006), and interdependent

11 The original paper by Hajiaghayi et al. (2005) mischaracterized the monotonicity requirement that is necessary
for the truthful implementation of stochastic policies. This was originally brought to the attention of the authors
by R. Vohra. The corrected analysis (presented here) is due to M. Mahdian.
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value environments (Constantin et al., 2007). For an extended treatment of the single-
valued setting, see Parkes and Duong (2007).

Moving to the model-based framework, the discussion of the dynamic VCG mech-
anism is based on Parkes and Singh (Parkes and Singh, 2003; Parkes et al., 2004). A
general presentation in given in Bergemann and Välimäki (2006b), whose work along
with that of Cavallo et al. (2006) and Bapna and Weber (2006) pertains to a model
of coordinated learning; see also (Bergemann and Välimäki, 2003, 2006a; Athey and
Segal, 2007). Pai and Vohra (2006) advance the study of revenue-optimal online mech-
anisms in model-based environments, and together with Gallien (2006) work to extend
Myerson’s (1981) optimal auction to dynamic environments; see also Cremer et al.
(2007). The observation about the failure of the revelation principle, the example to
illustrate the role of nonnegative payments, as well as inspiration for the example of
a truthful, stochastic policy are due to Pai and Vohra (2006). For references on on-
line algorithms and methods for solving sequential decision problems, see (Borodin
and El-Yaniv, 1998; Van Hentenryck and Bent, 2006; Puterman, 1994; Kearns et al.,
1999).
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Exercises

16.1 Prove that the revelation principle holds with no early-arrival and no late-departure
misreports and prove the “revelation principle + heartbeats” result in combination
with no early-arrival misreports.

16.2 Consider a (known interesting set) single-valued preference domain with no late-
departure misreports. Show that any decision policy π that can be truthfully im-
plemented by an IR mechanism, and does not pay unallocated agents, must be
monotonic-early (for a suitable definition of monotonic-early).

16.3 Prove that the approach outlined to constructing truthful online auctions in terms
of an agent-independent price schedule qt

i (L , θ−i , ω) induces a monotonic-late de-
cision policy and critical-value payments. How would you modify the construction
for an environment with both no early-arrival and no late-departure misreports?

16.4 Construct an example to show that the greedy auction in the expiring items setting
has an arbitrarily bad competitive ratio with respect to offline VCG revenue.

16.5 Establish that the self-consistency property on prices in Section 16.3.4, coupled
with the condition that a mechanism selects an outcome that maximizes utility for
every agent at these prices is sufficient for truthfulness. Prove that the condition
reduces to agent-independent prices for unrestrictedxs misreports.

16.6 Prove that modifications (i–iii) in Section 16.3.4 are sufficient to achieve truthful-
ness with agents with unknown interesting sets, together with no early-arrival and
no late-departure misreports and a critical-value payment. What could break if the
interesting sets are not disjoint, or if the policy is not minimal?

16.7 Show that the stochastic policy outlined in Example 16.26 satisfies monotonicity
conditions (16.12) and (16.13).

16.8 Define a dynamic VCG mechanism that works for infinite time horizon and agents
with a common, known discount factor γ ∈ (0, 1).


